3 resultados para Fígado - Cancer

em eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daikon and radish sprouts contain high levels of glucoraphenin, a glucosinolate which hydrolyses to form sulphoraphene. Sulphoraphene, like sulphoraphane from broccoli, is a potent inducer of phase 2 detoxification enzymes and consequently has potential anti-cancer action. Unlike broccoli however, daikon and radish do not possess epithiospecifier protein, a protein that inhibits conversion of glucosinolates to isothiocyanates, and consequently they may represent more suitable sources of phyto-chemicals with anti-cancer potential. Concentrations of glucoraphenin were highest in the seed, declining exponentially with sprout development. The rate of decline was observed to vary considerably between varieties of daikon and radish, with some varieties maintaining significantly high levels of glucoraphenin. Varieties maintaining a high level of glucoraphenin included 'Cherry Belle' and 'French Breakfast'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radish sprouts and broccoli sprouts have been implicated in having a potential chemoprotective effect against certain types of cancer. Each contains a glucosinolate that can be broken down to an isothiocyanate capable of inducing chemoprotective factors known as phase 2 enzymes. In the case of broccoli, the glucosinolate, glucoraphanin, is converted to an isothiocyanate, sulforaphane, while in radish a similar glucosinolate, glucoraphenin, is broken down to form the isothiocyanate, sulforaphene. When sprouts are consumed fresh (uncooked), however, the principal degradation product of broccoli is not the isothiocyanate sulforaphane, but a nitrile, a compound with little anti-cancer potential. By contrast, radish sprouts produce largely the anti-cancer isothiocyanate, sulforaphene. The reason for this difference is likely to be due to the presence in broccoli (and absence in radish) of the enzyme cofactor, epithiospecifier protein (ESP). In vitro induction of the phase 2 enzyme, quinone reductase (QR), was significantly greater for radish sprouts than broccoli sprouts when extracts were self-hydrolysed. By contrast, boiled radish sprout extracts (deactivating ESP) to which myrosinase was subsequently added, induced similar QR activity to broccoli sprouts. The implication is that radish sprouts have potentially greater chemoprotective action against carcinogens than broccoli sprouts when hydrolysed under conditions similar to that during human consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radishes are most commonly consumed as a root vegetable, although radish leaves are occasionally used in salads and cooking. While both the radish root and shoot contain glucosinolates with anti-cancer potential, the glucosinolate profile of the root and the shoot are very different. Whereas the root contains mainly glucodehydroerucin (2.8 mol/gFW) (also known as glucoraphasatin), the main glucosinolate components of the shoot are glucoraphanin (2.8 mol/gFW) and glucoraphenin (2.1 mol/gFW). Upon hydrolysis, the latter glucosinolates produce sulforaphane and sulforaphene respectively, both potent inducers of mammalian phase 2 enzymes. Previously, radishes have been dismissed as having minimal anti-cancer potential based on studies with radish roots. However, depending on the cultivar, radish shoots can have up to 45 times the capacity of roots to induce phase 2 enzymes. In fact, shoots of a number of radish cultivars (eg. 'Black Spanish') have similar or greater anti-cancer potential than broccoli florets, a vegetable that has received considerable interest in this area.